Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 270: 115832, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141336

RESUMO

Agricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective. Among various micronutrients, selenium (Se) is essential in small amounts for the life cycle of organisms, including crops. Selenium has the potential to improve soil health, leading to the improvement of productivity and crop quality. However, Se possesses an immense encouraging phenomenon when supplied within the threshold limit, also having wide variations. The supplementation of Se has exhibited promising outcomes in lessening biotic and abiotic stress in various crops. Besides, bulk form, nano-Se, and biogenic-Se also revealed some merits and limitations. Literature suggests that the possibilities of biogenic-Se in stress alleviation and fortifying foods are encouraging. In this article, apart from adopting a combination of a conventional extensive review of the literature and bibliometric analysis, the authors have assessed the journey of Se in the "soil to spoon" perspective in a diverse agroecosystem to highlight the research gap area. There is no doubt that the time has come to seriously consider the tag of beneficial elements associated with Se, especially in the drastic global climate change era.


Assuntos
Selênio , Oligoelementos , Micronutrientes/análise , Solo , Agricultura , Produtos Agrícolas
2.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207649

RESUMO

Micronutrient malnutrition is a global health issue and needs immediate attention. Over two billion people across the globe suffer from micronutrient malnutrition. The widespread zinc (Zn) deficiency in soils, poor zinc intake by humans in their diet, low bioavailability, and health consequences has led the research community to think of an economic as well as sustainable strategy for the alleviation of zinc deficiency. Strategies like fortification and diet supplements, though effective, are not economical and most people in low-income countries cannot afford them, and they are the most vulnerable to Zn deficiency. In this regard, the biofortification of staple food crops with Zn has been considered a useful strategy. An agronomic biofortification approach that uses crop fertilization with Zn-based fertilizers at the appropriate time to ensure grain Zn enrichment has been found to be cost-effective, easy to practice, and efficient. Genetic biofortification, though time-consuming, is also highly effective. Moreover, a Zn-rich genotype once developed can also be used for many years without any recurring cost. Hence, both agronomic and genetic biofortification can be a very useful tool in alleviating Zn deficiency.


Assuntos
Biofortificação/métodos , Produtos Agrícolas/genética , Fertilizantes/análise , Alimentos Fortificados/normas , Desnutrição/dietoterapia , Solo/química , Zinco/química , Humanos , Desnutrição/fisiopatologia , Estado Nutricional
3.
Molecules ; 26(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562416

RESUMO

The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.


Assuntos
Biofortificação , Ácido Selênico/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Plantas/metabolismo , Ácido Selênico/química , Selênio/química , Selenocisteína/química , Selenocisteína/metabolismo , Selenometionina/química , Selenometionina/metabolismo , Selenoproteínas/biossíntese , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA